Fixed-Structure Discrete-Time \mathcal{H}_{∞} Controller Synthesis with HIFOO

Andrey Popov¹ Herbert Werner¹ Marc Millstone²

¹Institute of Control Systems Hamburg University of Technology Germany ²Courant Institute of Mathematical Sciences New York University USA

16.12.2010
49th IEEE Conference on Decision and Control

- Motivation
- Discrete-time HIFOO
- Active Suspension System
- Conclusions

Contents

- Motivation

Motivation - 1: Simple Controllers

Fixed-structure controllers are

- computationally efficient
- economic/energy efficient
- + easy to implement and verify

But:

Motivation - 1: Simple Controllers

Fixed-structure controllers are

- + computationally efficient
- + economic/energy efficient
- + easy to implement and verify

But:

- generally a non-convex problem
- convex reformulation only for SISO systems (central polynomial approach) [Henrion, 2005], [Khatibi & Karimi, 2010]
- ~ variety of methods proposed for continuous-time problems

Motivation - 2: Discrete-Time Synthesis

- digital controllers
- black-box identification
- high performance requirements/large sampling times T
- Performance is lost by continuous-time synthesis shown in a moment

- + digital controllers
- black-box identification
- + high performance requirements/large sampling times T
- Performance is lost by continuous-time synthesis shown in a moment

Often: bilinear transformation + continuous-time synthesis

$$z = \frac{2+Ts}{2-Ts}$$
, synthesis $s = \frac{2}{T} \frac{z-1}{z+1}$

Motivation - 2: Discrete-Time Synthesis

- + digital controllers
- black-box identification
- + high performance requirements/large sampling times T
- Performance is lost by continuous-time synthesis shown in a moment

Often: bilinear transformation + continuous-time synthesis

$$z=rac{2+Ts}{2-Ts}, \qquad ext{synthesis} \qquad s=rac{2}{T}rac{z-1}{z+1}$$

Problems

- frequency warping
- performance loss by constrained sampling rate

- Gradient-based fixed-structure \mathcal{H}_{∞} synthesis [Burke et.al., 2006], [Apkarian & Noll, 2006]
- Offer

Motivation

- fast convergence
- local optimum
- good results [Gumussoy et.al., 2008]
- HIFOO is open source

Problem Formulation

Given a generalized plant G(z)find a controller $K(z) \in \mathbf{K}(z)$ such that

$$||M(z)||_{\infty}$$

is minimized,

where

$$M(z) = \mathcal{F}_L(G(z), K(z))$$

Contents

- Discrete-time HIFOO

HIFOO Algorithm

- Initialization random controllers
- Stabilization

find
$$K(z) \in \mathbf{K}(z)$$
 s.t. $M(z) = \mathcal{F}_L(G(z), K(z))$ is stable

③ Closed-loop \mathcal{H}_{∞} norm minimization

$$\underset{K(z) \in \mathbf{K}(z)}{\mathsf{minimize}} \| \mathcal{F}_L(G(z), K(z)) \|_{\infty}$$

HIFOO Algorithm

- Initialization random controllers
- Stabilization

find
$$K(z) \in \mathbf{K}(z)$$
 s.t. $M(z) = \mathcal{F}_L(G(z), K(z))$ is stable

③ Closed-loop \mathcal{H}_{∞} norm minimization

$$\min_{K(z) \in \mathbf{K}(z)} \left\| \mathcal{F}_L(G(z), \, K(z))
ight\|_{\infty}$$

HIFOO Algorithm

- Initialization random controllers
- Stabilization

find
$$K(z) \in \mathbf{K}(z)$$
 s.t. $M(z) = \mathcal{F}_L(G(z), K(z))$ is stable

3 Closed-loop \mathcal{H}_{∞} norm minimization

$$\underset{K(z) \in \mathbf{K}(z)}{\mathsf{minimize}} \left\| \mathcal{F}_L(G(z), \, K(z)) \right\|_{\infty}$$

Continuous-time

$$\label{eq:alpha} \begin{aligned} & \underset{K(z)}{\text{minimize}} \ \alpha(A) \\ & \text{until } \alpha(A) < 0 \end{aligned}$$

 α - spectral abscissa A - closed-loop system matrix

Continuous-time

$$\label{eq:alpha} \begin{aligned} & \underset{K(z)}{\text{minimize}} \ \alpha(A) \\ & \text{until } \alpha(A) < 0 \end{aligned}$$

 α - spectral abscissa

A - closed-loop system matrix

Gradient-steps

- Given K(z), compute $\operatorname{spec}(A)$ and find λ_k at which α is attained
- 2 Compute gradient of α w.r.t. A
- **3** Compute gradient of A w.r.t. K(z)
- Update K(z)

Continuous-time

Discrete-time

$$\label{eq:alpha} \begin{aligned} & \underset{K(z)}{\text{minimize}} \ \alpha(A) \\ & \text{until } \alpha(A) < 0 \end{aligned}$$

 α - spectral abscissa A - closed-loop system matrix

ho - spectral radius

Gradient-steps

- Given K(z), compute $\operatorname{spec}(A)$ and find λ_k at which α is attained
- 2 Compute gradient of α w.r.t. A
- **3** Compute gradient of A w.r.t. K(z)
- Update K(z)

Continuous-time

Discrete-time

$$\label{eq:alpha} \begin{aligned} & \underset{K(z)}{\text{minimize}} \ \alpha(A) \\ & \text{until } \alpha(A) < 0 \end{aligned}$$

$$\begin{aligned} & \underset{K(z)}{\text{minimize}} \; \rho(A) \\ & \quad \text{until} \; \rho(A) < 1 \end{aligned}$$

 α - spectral abscissa A - closed-loop system matrix

ρ - spectral radius

Gradient-steps

- Given K(z), compute spec(A) and find λ_k at which ρ is attained
- Compute gradient of ρ w.r.t. A
- **3** Compute gradient of A w.r.t. K(z)
- lacktriangle Update K(z)

Let $A(t) = A_0 + Pt$, $A \in \mathbb{R}^{n \times n}$ and small t.

Let $\lambda_k \in \operatorname{spec}(A)$ has algebraic multiplicity one and eigenvectors y (left) and x (right).

$$\frac{d\lambda_k}{dt} = \frac{y^*Px}{y^*x} \qquad \text{[Horn \& Johnson, 1985]}$$

Let $\lambda_k = \mathcal{R} + j\mathcal{I}$; $\ell_k = \begin{bmatrix} \mathcal{R} & \mathcal{I} \end{bmatrix}$.

$$\rho = |\lambda_k| = \sqrt{\mathcal{R}^2 + \mathcal{I}^2} = |\ell_k|$$

$$\frac{\partial \rho}{\partial \ell_k} = \begin{bmatrix} \frac{\mathcal{R}}{\sqrt{\mathcal{R}^2 + \mathcal{I}^2}} & \frac{\mathcal{I}}{\sqrt{\mathcal{R}^2 + \mathcal{I}^2}} \end{bmatrix} = \frac{\ell_k}{|\lambda_k|} \qquad \Leftrightarrow \qquad \frac{\partial \rho}{\partial \lambda_k} = \frac{\lambda_k}{|\lambda_k|}$$

Hence

$$\frac{d\rho(A)}{dt} = \operatorname{Re}\left\{\frac{\bar{\lambda}_k}{|\lambda_k|} \frac{y^* P x}{y^* x}\right\}$$

Let $A(t)=A_0+Pt,\ A\in\mathbb{R}^{n\times n}$ and small t.Let $\lambda_k\in\operatorname{spec}(A)$ has algebraic multiplicity one and eigenvectors y (left) and x (right).

$$\frac{d\lambda_k}{dt} = \frac{y^*Px}{y^*x}$$
 [Horn & Johnson, 1985]

Let
$$\lambda_k = \mathcal{R} + j\mathcal{I}$$
; $\ell_k = \begin{bmatrix} \mathcal{R} & \mathcal{I} \end{bmatrix}$.

$$\rho = |\lambda_k| = \sqrt{\mathcal{R}^2 + \mathcal{I}^2} = |\ell_k|$$

$$\frac{\partial \rho}{\partial \ell_k} = \begin{bmatrix} \frac{\mathcal{R}}{\sqrt{\mathcal{R}^2 + \mathcal{I}^2}} & \frac{\mathcal{I}}{\sqrt{\mathcal{R}^2 + \mathcal{I}^2}} \end{bmatrix} = \frac{\ell_k}{|\lambda_k|} \qquad \Leftrightarrow \qquad \frac{\partial \rho}{\partial \lambda_k} = \frac{\lambda_k}{|\lambda_k|}$$

Hence

$$\frac{d\rho(A)}{dt} = \operatorname{Re}\left\{\frac{\bar{\lambda}_k}{|\lambda_k|} \frac{y^* P x}{y^* x}\right\}$$

Let $A(t) = A_0 + Pt$, $A \in \mathbb{R}^{n \times n}$ and small t. Let $\lambda_k \in \operatorname{spec}(A)$ has algebraic multiplicity one and eigenvectors y (left) and x (right).

$$\frac{d\lambda_k}{dt} = \frac{y^* P x}{y^* x}$$
 [Horn & Johnson, 1985]
$$t_k = \mathcal{R} + i \mathcal{T}; \quad \ell_k = \begin{bmatrix} \mathcal{R} & \mathcal{T} \end{bmatrix}$$

Let
$$\lambda_k = \mathcal{R} + j\mathcal{I}$$
; $\ell_k = \begin{bmatrix} \mathcal{R} & \mathcal{I} \end{bmatrix}$.

$$\rho = |\lambda_k| = \sqrt{\mathcal{R}^2 + \mathcal{I}^2} = |\ell_k|$$

$$\frac{\partial \rho}{\partial \ell_k} = \begin{bmatrix} \frac{\mathcal{R}}{\sqrt{\mathcal{R}^2 + \mathcal{I}^2}} & \frac{\mathcal{I}}{\sqrt{\mathcal{R}^2 + \mathcal{I}^2}} \end{bmatrix} = \frac{\ell_k}{|\lambda_k|} \qquad \Leftrightarrow \qquad \frac{\partial \rho}{\partial \lambda_k} = \frac{\lambda_k}{|\lambda_k|}$$

$$\frac{d\rho(A)}{dt} = \operatorname{Re}\left\{\frac{\bar{\lambda}_k}{|\lambda_k|} \frac{y^* P x}{y^* x}\right\}$$

Let $A(t)=A_0+Pt,\ A\in\mathbb{R}^{n\times n}$ and small t.Let $\lambda_k\in\operatorname{spec}(A)$ has algebraic multiplicity one and eigenvectors y (left) and x (right).

$$\frac{d\lambda_k}{dt} = \frac{y^*Px}{y^*x}$$
 [Horn & Johnson, 1985]

Let
$$\lambda_k = \mathcal{R} + j\mathcal{I}$$
; $\ell_k = \begin{bmatrix} \mathcal{R} & \mathcal{I} \end{bmatrix}$.

$$\rho = |\lambda_k| = \sqrt{\mathcal{R}^2 + \mathcal{I}^2} = |\ell_k|$$

$$\frac{\partial \rho}{\partial \ell_k} = \begin{bmatrix} \frac{\mathcal{R}}{\sqrt{\mathcal{R}^2 + \mathcal{I}^2}} & \frac{\mathcal{I}}{\sqrt{\mathcal{R}^2 + \mathcal{I}^2}} \end{bmatrix} = \frac{\ell_k}{|\lambda_k|} \qquad \Leftrightarrow \qquad \frac{\partial \rho}{\partial \lambda_k} = \frac{\lambda_k}{|\lambda_k|}$$

Hence

$$\frac{d\rho(A)}{dt} = \operatorname{Re}\left\{\frac{\bar{\lambda}_k}{|\lambda_k|} \frac{y^* P x}{y^* x}\right\}$$

Let $A(t)=A_0+Pt,\ A\in\mathbb{R}^{n\times n}$ and small t.Let $\lambda_k\in\operatorname{spec}(A)$ has algebraic multiplicity one and eigenvectors y (left) and x (right).

$$\frac{d\lambda_k}{dt} = \frac{y^*Px}{y^*x}$$
 [Horn & Johnson, 1985]

Let
$$\lambda_k = \mathcal{R} + \mathrm{j}\mathcal{I}; \quad \ell_k = \begin{bmatrix} \mathcal{R} & \mathcal{I} \end{bmatrix}.$$

$$\rho = |\lambda_k| = \sqrt{\mathcal{R}^2 + \mathcal{I}^2} = |\ell_k|$$

$$\frac{\partial \rho}{\partial \ell_k} = \begin{bmatrix} \frac{\mathcal{R}}{\sqrt{\mathcal{R}^2 + \mathcal{I}^2}} & \frac{\mathcal{I}}{\sqrt{\mathcal{R}^2 + \mathcal{I}^2}} \end{bmatrix} = \frac{\ell_k}{|\lambda_k|} \qquad \Leftrightarrow \qquad \frac{\partial \rho}{\partial \lambda_k} = \frac{\lambda_k}{|\lambda_k|}$$

Hence

$$\frac{d\rho(A)}{dt} = \operatorname{Re}\left\{\frac{\bar{\lambda}_k}{|\lambda_k|} \frac{y^\star Px}{y^\star x}\right\}$$

Let $A(t)=A_0+Pt,\ A\in\mathbb{R}^{n\times n}$ and small t.Let $\lambda_k\in\operatorname{spec}(A)$ has algebraic multiplicity one and eigenvectors y (left) and x (right).

$$\frac{d\lambda_k}{dt} = \frac{y^\star Px}{y^\star x} \qquad \text{[Horn \& Johnson, 1985]}$$
 Let $\lambda_k = \mathcal{R} + \mathrm{j}\mathcal{I}; \quad \ell_k = \begin{bmatrix} \mathcal{R} & \mathcal{I} \end{bmatrix}.$
$$\rho = |\lambda_k| = \sqrt{\mathcal{R}^2 + \mathcal{I}^2} = |\ell_k|$$

Theorem

For a matrix A with $\rho(A) = |\lambda_k|$ holds

$$\nabla_A \rho = \operatorname{Re} \left\{ \frac{\lambda_k}{|\lambda_k|} \frac{yx^*}{y^*x} \right\}$$

Gradient Steps

Stabilization

- **①** Compute spec(A) and find λ_k at which ρ is attained
- **2** Compute gradient of ρ w.r.t. A
- **3** Compute gradient of A w.r.t. K(z)
- Update K(z)

Gradient Steps

Stabilization

- **①** Compute spec(A) and find λ_k at which ρ is attained
- **2** Compute gradient of ρ w.r.t. A
- **3** Compute gradient of A w.r.t. K(z)
- Update K(z)

\mathcal{H}_{∞} norm minimization

- ① Compute $f = \|M(z)\|_{\infty} = \bar{\sigma}(M_x)$ where $M_x = C\left(Ie^{j\omega_x} - A\right)^{-1}B + D$
- ② Compute the gradient of f w.r.t. M_x
- **3** Compute the gradient of M_x w.r.t. K(z)
- Update K(z)

Contents

- Motivation
- Discrete-time HIFOC
- 3 Active Suspension System
- 4 Conclusions

Active Suspension Benchmark System

[Landau et.al. 2003]

Active Suspension Benchmark System

Active Suspension System

•0000

Design Requirements

Active Suspension System - 4-Block Design

[Hol et. al. 2003]

Active Suspension System - 4-Block Design

[Hol et. al. 2003]

Cont. gain of zero at $0.5F_s$ \Rightarrow $\hat{P}(z) = P(z)\frac{z+1}{z}$

Comparison

Controller			Computation	
design approach	k	γ	time	load
Full order	27	2.476	11.9 s	1
Balanced reduction	5	3.405	12.8 s	1.07
Curved line search	5	2.506	4h23m45s	1329.00
Cone complement.	5	2.630	14m33s	73.36
Hybrid EvolAlgebr.	5	2.589	2m42s	13.61
Hybrid EvolAlgebr.	2	2.596	1m25s	7.16
HIFOO - continuous	5	2.611	22.3 s	11.69
	2	2.473	41.4 s	21.68
	1	2.611	20.6 s	10.82
HIFOO - discrete	5	2.466	1m33s	51.87
	2	2.470	28.2 s	14.75
	1	2.611	7.7 s	4.17

Comparison

Controller			Computation	
design approach	k	γ	time	load
Full order	27	2.476	11.9 s	1
Balanced reduction	5	3.405	12.8 s	1.07
Curved line search	5	2.506	4h23m45s	1329.00
Cone complement.	5	2.630	14m33s	73.36
Hybrid EvolAlgebr.	5	2.589	2m42s	13.61
Hybrid EvolAlgebr.	2	2.596	1m25s	7.16
HIFOO - continuous	5	2.611	22.3 s	11.69
	2	2.473	41.4 s	21.68
	1	2.611	20.6 s	10.82
HIFOO - discrete	5	2.466	1m33s	51.87
	2	2.470	28.2 s	14.75
	1	2.611	7.7 s	4.17

Comparison

Controller			Computation	
design approach	k	γ	time	load
Full order	27	2.476	11.9 s	1
Balanced reduction	5	3.405	12.8 s	1.07
Curved line search	5	2.506	4h23m45s	1329.00
Cone complement.	5	2.630	14m33s	73.36
Hybrid EvolAlgebr.	5	2.589	2m42s	13.61
Hybrid EvolAlgebr.	2	2.596	1m25s	7.16
HIFOO - continuous	5	2.611	22.3 s	11.69
	2	2.473	41.4 s	21.68
	1	2.611	20.6 s	10.82
HIFOO - discrete	5	2.466	1m33s	51.87
	2	2.470	28.2 s	14.75
	1	2.611	7.7 s	4.17

Performance

Performance

Performance

Contents

- Motivation
- Discrete-time HIFOC
- Active Suspension System
- 4 Conclusions

Conclusions

- Discrete-time fixed-structure \mathcal{H}_{∞} synthesis
- Allows direct structural restrictions
- Better results than previous techniques

HIFOO+d

- http://bitbucket.org/andrey.popov/hifoo-d
- Discrete-time
- Replicated/repeated controller blocks:

$$K(z) \in \begin{bmatrix} \mathbf{K}_1(z) & \mathbf{K}_1(z) \\ & \mathbf{K}_2(z) & \\ & & \mathbf{K}_2(z) \end{bmatrix}$$

- redundant elements
- symmetric systems
- multi-agent systems [Popov & Werner, 2010]
- μ-synthesis [Apkarian, 2010]
- features, not available in MATLAB 2010b or HIFOO 3.0
- GPL