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Abstract— Most control engineering problems are character-
ized by several, often contradicting, objectives, which have to be
satisfied simultaneously. Two widely used methods for finding
the optimal solution to such problems are aggregating to a single
criterion, and using Pareto-optimal solutions. Here we propose a
Genetic Algorithm (GA) approach using a combination of both
methods to find a fixed-gain, discrete-time PID controller for a
chemical neutralization plant. Known to be highly non-linear
and with varying time delay, this plant provides a challenging
testbed for nonlinear control strategies. Experimental results
confirm that a multi-objective, Pareto-based GA search gives
a better performance than a single objective GA. The former
method was also used to design a gain-scheduled PID controller,
for which also experimental results are shown.

I. INTRODUCTION

Most control engineering problems are characterized by
several objectives that must be satisfied. Engineers are often
faced with design problems, where a controller is needed that
provides e.g. a fast response, small overshoot, no oscillation
and economical control. There are mainly two ways of
tackling this problem: (i) aggregating the objectives to a
single objective or (ii) solving a multi-objective optimization
problem (Pareto-based method). Aggregating several objec-
tives into a single objective has the advantage of solving
a simpler problem, but on the other hand many design
iterations are required to obtain an acceptable compromise.
On the other hand, the multi-objective approach is claimed
to lead to a set of solutions each of which dominates the
others in some sense.

This paper compares these two techniques by applying
them to a practical controller design problem: to design a
gain-scheduled PID controller for a chemical titration and
neutralization plant (TINA). This plant is known to be highly
nonlinear, which makes it suitable for comparison. In [1],
[2] and [4] different solutions to this problem are proposed.
Here, however we consider the design of a standard PID
controller. This controller type is still the one most widely
used in industry [5]. The ease of manual fine-tuning of the
three coefficients makes PID controllers the preferred choice
for many processes. Here we consider a disturbance rejection
problem and the design of both a fixed-coefficient and a gain-
scheduled discrete-time PID controller.

Although a variety of PID tuning techniques is available
[5], the most efficient way to tune the parameters of a
PID controller for non-linear or high-order systems is direct
optimization. This requires however the solution of non-

convex problems. Genetic algorithms (GA) are well suited
for a variety of optimization problems in the control field [3].
The single-objective approach is implemented using the GA
and direct search toolbox for Matlab 7.0. The multi-objective
algorithm used here is the Strength Pareto Evolutionary
Algorithm (SPEA2) [8], [7], which is one of the most
powerful multi-objective techniques, and has outperformed
many other algorithms (e.g. the one proposed in [6]).

II. T ITRATION AND NEUTRALIZATION PLANT

A laboratory scale chemical plant, allowing titration and
neutralization of chemical substances, is available at the
TUHH Institute of Control Engineering and was used to
neutralize hydrochloric acid (HCl) and Natrium Hydroxide
(Na OH). Fig. 1 shows a diagram of the reaction tank. The
acid inflow is controlled by a pump, and the base inflow by
a valve. The pH value of the acid is1.7± 0.05 and the pH
of the base is12.5± 0.1. Separate loops are controlling the
liquid level and the temperature in the reaction tank to keep
it at 210 ± 10 mm and21 ± 1 ◦C, respectively. Those low-
level loops and the mixer in the tank operate independently
and are not considered here.

NaOH

pH

baseacid

HCl

Fig. 1. Reaction tank

The neutralization plant is characterized by strongly non-
linear behaviour, having operating points with very high
gain and operating points with very low gain, as well as
saturation and time variations caused by buffering species
(salt, contaminations, etc). An additional difficulty is due
to the significant longer time delay of the base actuator
(valve) than that of the acid actuator (pump). Two titration
curves (one showing transition from acid to base and one the
opposite direction) are shown in Fig. 2.

Depending on its sign, the control signal is applied either
to the valve (positive values of the control signal) or the
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Fig. 2. Titration curves

pump. Both have non-linear characteristics, shown in Fig. 3.
As a first step, the dead-zone of the actuators was compen-
sated for by adding an offset, and the characteristics were
linearized around0 by increasing the gain for the base signal.
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Fig. 3. Actuator characteristics

III. PROBLEM FORMULATION

A stabilization and disturbance rejection task is consid-
ered. The pH value in the reaction tank should be kept
constant at7 and disturbances applied to the input of the
plant should be rejected.

Experimental data from the plant running in closed-loop
operation with varying disturbance signals (Fig. 4) have been
gathered. During the experiment a proportional controller
was used to keep the pH value around7 and avoid saturation.
The same disturbance signal was used again later in the
tuning process. The data set was then used to train a neural
network (NN). Using the NN identification toolbox ([9]), a
satisfactory model of the plant was obtained. Comparison
of the model output with a cross-validation data set is
shown in Fig. 5. One can clearly see that step disturbances
of same amplitude but opposite directions (acid and base)
have different effects. For large disturbance amplitudes the
compensation of acid takes about twice the time as that for
base.

IV. FIXED GAIN PID CONTROL

Two design objectives are considered: (1) minimal error
(e) between the reference signal and the output and (2)
minimal control (u). Whereas minimizing the first objective
will provide good reference tracking and better disturbance
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Fig. 5. Model validation

rejection, minimizing the second reduces the quantity of
of acid and base and thus the cost of the control. The
mathematical description of these objectives are given below

J1 =
∫ Ts

0

e2(t)dt (1)

J2 =
∫ Ts

0

|u(t)|dt (2)

whereTs = 2000s is the simulation time.
The first objective is the integral squared error, so large

amplitudes are penalized. On the other hand,J2 is a good
measure of the total acid and base quantities required for
control. Using the NN non-linear model andJ2 as the
integral of the absolute error makes the optimization problem
non-convex. Here we will use only these two objectives, the
Pareto-surface of which can be easily displayed. However,
more objectives (e.g. separate measures for acid and base)
can be introduced if necessary.

First we use the objective aggregation method and com-
bine the two objectives into a single one. Then we compare
the results with those obtained by multi-objective optimiza-
tion. In both cases we have three design parameters:KP ,
KI and KD of the PID controller. The sampling time is
Ts = 0.5s. The transfer function of the PID controller is

K(z)=KP +KI
KTs

z−1
+KD

2z−2
(Ts+2Tc)z+Ts−2Tc

whereTc = 0.5ms is the time constant for the derivative.



A. Objective Aggregation

When using objective aggregation, weight factors are
introduced that give different priority to different objectives.
Here we need only one weightW to aggregateJ1 andJ2 to

Ja = J1 + WJ2 (3)

Before starting the optimization, one needs to specify a value
for W . At this stage factors like the ”raw” values of the
objective functions and their importance could be considered
when choosing the appropriate weight. When, however, such
information is not available, different values ofW are used
and the corresponding system behaviors are compared.

A population size of 20 individuals for the GA is chosen.
Fragment-exponential encoding of the PID coefficients is
used, by which each coefficient is encoded by two design
variables using the formK = p110p2 . This allows the GA
to search a wide range of values, with a small change of
the exponential variable. Preliminary optimization runs show
that 200 generations are sufficient from the point of view of
convergence and repeatability of the results.

Simulations for 52 different weights were performed. With
the obtained PID coefficients the separate values ofJ1 and
J2 were computed and the results are shown in Fig. 6. Seven
dominated points, which are above and to the right of the plot
area, are not shown. At first a logarithmic scale for the weight
was used from10−1 to 102 and 7 points were found. It is
important to note that the computation time for each weight
value is approximately 45 min on a 2.6 GHz Pentium IV
processor. The results were used to define the precise search
area: from0.1 with step size0.1 to 1; from 1 with step size
1 to 10 and from there with step size10 up to 100. The
resulting points on the Pareto surface were still clustered in
two areas, and the edge elements were found to be50 and
70. A step size of1 was used to scan the area between them,
but the corresponding results were still on either side of the
gap. Significantly increasing the population size (500) did not
help finding points in the gap. Due to the long computation
time this approach was not pursued further.

The main reason for the gap existing in Fig. 6 is the high
sensitivity of the aggregated objective function (J1 + WJ2)
at some regions of the Pareto-set to changes in the tuning
parameterW . For example a very small change of the
weight between56 and 61 gives a huge change of the
trade-off betweenJ1 andJ2. The elements in-between were
converging either to one of the sides or to a dominated point
far from the surface.

B. Multi-Objective GA (MOGA)

In contrast to the single-objective algorithms, which try
to find a single solution of the problem, the multi-objective
technique searches for the optimal Pareto set directly. A
solution is said to be Pareto-optimal (non-dominated), if
there exists no other solution which simultaneously improves
the values of both objectives (J1 andJ2). GA are particulary
well suited for multi-objective techniques, because they work
with a population of solutions rather than a single solution.
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Fig. 6. Single-objective optimization results

The algorithm selected here is SPEA [7], [8]. The available
C code, PISA format ([13]) version of the algorithm, was
modified to allow system simulation and calculation of the
objective functions in a MATLAB environment.

Here again fragment-exponential encoding of the PID
coefficients was used. Population size and Pareto-set size
of 50 points were found to give a good distribution over the
Pareto-surface. At the same time200 generations are enough
for the algorithm to converge to a set close to the expected
optimal one. The resulting Pareto-surface is shown in Fig. 7.
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Fig. 7. Multi-objective optimization results

C. Simulation and Experimental Results

In Fig. 8 the results obtained with the two methods
are shown together. In [7] a method for comparing results
from multi-objective optimizations is proposed, but since it
involves knowledge of the Pareto-optimal surface we cannot
apply it here. It is important to note that to obtain the
52 points with the aggregation method, a total number of
52 × 200 × 20 = 208000 closed-loop simulations had



to be performed, while for the 50 points on the multi-
objective method only50 × 200 = 10000 simulations were
needed. This means that MOGA is 20 times faster than the
aggregation technique. Furthermore, the aggregation method
was not able to find all points of the Pareto optimal set.

Three of the solutions, numbered from 1 to 3 in Fig. 8
were chosen and experiments on TINA were performed with
the corresponding controllers. Points number 1 and 3, were
chosen to match both the results from single-objective and
multiobjective optimization. The simulation and experimen-
tal results are compared in Fig. 9 to 11.
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Fig. 8. Single and multi-objective optimization Pareto-sets and chosen
points for experiments
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Fig. 9. Simulation and experimental results for point 1

As shown in the figures the integral gain of the PID
controller is relatively small, because the plant itself has
integral action: even a small input, applied to the plant for a
long time, can drive it into saturation zones. The derivative
gains are small, due to the oscillatory behavior introduced
by modelling errors.
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Fig. 10. Simulation and experimental results for point 2
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Fig. 11. Simulation and experimental results for point 3

V. GAIN-SCHEDULED PID CONTROL

Having shown that multiobjective GA optimization de-
livers better results than the single-objective optimization
for the given design problem, we will use the former to
find a gain-scheduled PID controller for the titration and
neutralization plant.

The objective functions remain the same as in (1) and (2).
The gain-scheduled control law is of the form

KP (k) = KP0 + KP1ε(k) + KP2ε
2(k) (4)

whereε(k) = pH(k) − CpH . Thus we have a total of 6
design parameters:KP0, KP1, KP2, CpH andKI andKD.

Running SPEA with the same parameters (population size
of 50 and 200 generations) we obtain a new Pareto-surface,
which is shown in Fig. 12 together with the one obtained via
a fixed-gain PID controller.

From the obtained points we select one (number 4 in
Fig. 12) with coefficients
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Fig. 12. Comparison between fixed-gain and gain-scheduled controllers

KP0 = 5.26 · 10−4; KP1 = −2.52 · 10−3; KP2 = 1.25 ·
10−3; CpH = 8.68; KI = 2.28 · 10−8; KD = 2.62 · 10−4.

To demonstrate the performance improvement achieved
by gain-scheduling, the responses achieved with controllers
corresponding to points 3 and 4 are compared in Fig. 13.
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From the results it is obvious that the gain-scheduled
PID controller shows most of the time a faster disturbance
rejection than the fixed-gain PID controller. For the last three
disturbance impulses the response is almost two times faster
with the gain scheduled controller. The only exception is the
third group of disturbance impulses (600 to 900 s), where
the fixed-gain PID controller shows better performance.
The better performance of the gain-scheduled controller in
rejecting acid disturbances is due to the larger control signal
(larger amplitude for a short period of time).

VI. CONCLUSIONS AND FUTURE WORKS

Two GA search techniques - aggregation into a single
objective and using Pareto-optimal solutions (MOGA) - have
been used to design a fixed-gain PID controller for a highly
nonlinear chemical pilot plant. Experimental results confirm
that MOGA is superior in terms of efficiency. This latter
approach has also been used to design a gain-scheduled PID
controller for this plant, which has been successfully tested
experimentally.
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