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Abstract— In this paper we present an application of a
recently developed strategy for robust distributed controller
design for formations and show a way of including performance
requirements in the design. The proposed synthesis method
guarantees stability for all possible formations and arbitrary
fast changes in the communication topology. The number of
agents in the formation can also be chosen arbitrarily. We
illustrate the results by performing a simulation of a formation
flight of quad-rotor helicopters.

I. I NTRODUCTION

Advances in the field of computation and communication
technologies as well as the ongoing process of miniaturiza-
tion of embedded systems have sped up the development
of multi-agent systems. It is characteristic for multi-agent
systems that they are capable of communicating with each
other to accomplish a common goal. Furthermore they are
dynamically decoupled from each other and can interact
autonomously with their environment. It seems to be nat-
ural that multi-agent systems can perform tasks which are
beyond the capabilities of one agent. Besides unmanned
aerial vehicles (UAVs) that are considered in this paper,
application areas include autonomous underwater vehicles
[1], [2], mobile robotics [3], automated highway systems [4]
and satellite formation flying [5].

Although distributed systems suffer from latency and
depend on the structure of the communication topology, thus
requiring a more complex controller synthesis, they provide
numerous advantages compared to centralized systems:

• the failure of one agent does not inevitably mean that the
mission to be accomplished by the multi-agent system
fails;

• a single agent can be easily replaced;
• the number of agents can be altered according to the

specified task;
• less computational power and communication capabili-

ties required.

In this paper we consider a formation ofN identical
quad-rotor helicopters that can communicate with each other
to achieve the common goal. Further, each quad-rotor is
controlled locally, as shown in Fig. 1. The controller has
two components:

• KL is a local feedback controller, used to internally
stabilize the quad-rotor,

• KF is a “formation-level” controller, receiving and

compensating the error of the quad-rotor in the forma-
tion.
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Fig. 1. Single quad-rotor and its controller

Here we use a 6-DOF linear model of the quad-rotor
helicopters, and the graph-theory framework proposed in [6]
to model the communication-topology between them. For a
fixed number of LTI agents and known (and fixed) com-
munication topology there are numerous controller design
methods in the literature, see, e.g., [7], [8]. However, since
in practice the numberN of quad-rotors in the formation can
vary with the specific task, and the communication topology
might change during operation (agents getting far away,
broken communication links, etc.), here we use a result on
robust design proposed in [9]. This method guarantees that a
formation controllerKF satisfying the design requirements,
will stabilize any formation (with arbitrary number of agents
and time-varying communication topology) with a given
type of agent. We show how to extend the method to
handle performance requirements, such as mixed-sensitivity
constraints [10].

The rest of the paper is organized as follows. Section II
briefly recalls the graph-theoretical framework proposed in
[6] and the robust design method from [9], and shows how
to incorporate performance requirements in the latter. The
introduction of the quad-rotor system and the design of the
local feedback controllerKL is carried out in Section III. The
design of the formation-level controllerKF and simulation
results are presented in Section IV. Finally, conclusions are
drawn and an outlook to future work is given in Section V.

The following notation will be used throughout the paper:
Ip denotes thep × p identity matrix; R

p×q, C
p×q are,

correspondingly, the sets ofp×q real and complex matrices;
diag(x1, . . . , xn) indicates ann × n diagonal matrix with
the elementsx1 to xn on the diagonal;⊗ is the Kronecker
product; lft(P (s),K(s)) denotes the lower linear fractional
transformation ofP (s) with K(s) (see, e.g., [10]).



II. FORMATION MODELING AND CONTROLLER DESIGN

In this section we review the framework for formation
control proposed in [6] and the controller design approach
for stabilization of all formations proposed in [9]. Then we
show how performance requirements can be incorporated.

A. Communication Topology and Graph-Theory

Consider a formation ofN identical quad-rotors that are
communicating with each other. As in [6], the communi-
cation topology is represented as a directed graph, where
the nodes are the quad-rotors and the vertices are the
communication links; an example is shown in Fig. 2.
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Fig. 2. Graph representation of a formation withN = 5 quad-rotors. In
this example quad-rotor 3 receives information from quad-rotor 2 and sends
information to quad-rotors 1, 2 and 4

In the following we assume no communication delays, or
if any, they are fixed and accounted for in the quad-rotor
dynamics.

Let Ji denote the set of quad-rotors (neighbors) from
which quad-rotori receives information, and|Ji| its size
(the number of sensed neighbors). Then one measure of the
relative error of quad-rotori in the formation is the weighted
sum of the errors towards the sensed neighbors

ei =
1

|Ji|

∑

k∈Ji

eik (1)

The termeik is the error between thei-th andk-th unit

eik = (ri − vi) − (rk − vk) = r̄ik − (vi − vk)

where ri is a commanded absolute position for agenti,
r̄ik is a commanded (directional) offset between quad-rotor
helicoptersi andk which defines the desired formation given
in relative coordinates, andvi is the transmitted output of
quad-rotori. Here we assume that the outputsvi are the
coordinates of the quad-rotori in thex, y andz coordinates
(i.e., vi =

[

xi yi zi
]T

), but this can be easily extended
to include the quad-rotor orientations also.

In this paper we represent the communication topology
using the normalized graph Laplacian matrixL which is
defined as follows

Lik =







1, if i = k
− 1

|Ji|
, k ∈ Ji

0, k /∈ Ji

The important properties ofL, which simplify the controller
synthesis later on, are (see [6], [11])

• zero is an eigenvalue ofL if the formation has no leader
(i.e., there is no agent that does not receive information
from any of the other agents),

• all eigenvaluesλi of L lie in a unit disk centered at
1+ j0 in the complex plane (the so called Perron disk),

• for undirected graphsL has only real eigenvalues.
Collecting reference, output and error vectors for the

whole formation in a single column vector, (e.g.v =
[

vT1 . . . vTN
]T

), equation (1) can be rewritten as

e = L(p)(r − v) = r̄ − L(p)v (2)

whereL(p) = L ⊗ Ip; herep is the number of outputs of
vi (in the above the number of selected outputs isp = 3).
Note that since 0 is always an eigenvalue ofL, L(p) is rank
deficient and the same formation shaper̄ corresponds to
multiple absolute coordinatesr.

The quad-rotor formation closed-loop system is shown in
Fig. 3, whereH(s) includes everything in the dashed box in
Fig. 1. Note that the only exchange of information between
the quad-rotors occurs via the communication channels, i.e.,
throughL(p).
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Fig. 3. Closed-loop representation of the formation

B. Closed-Loop Formation Stability

Definition 1 A formation is called stable, if all poles of the
closed-loop interconnection in Fig. 3 are strictly in the left
half-plane.

Let the stable dynamics of the closed-loop system formed
by each quad-rotor and its local controllerKL be described
by

ξ̇i = Aξi +Bui (3)

vi = Cξi i = 1, . . . , N

whereA ∈ R
n×n, B ∈ R

n×l andC ∈ R
p×n.

Let the formation-level controller be an LTI controller
KF (s), such thatui(s) = KF (s) ei(s). The following result
is adapted from [6].

Theorem 1 The controllerKF (s) stabilizes the closed-loop
formation (Fig. 3) if and only if it simultaneously stabilizes
the set ofN systems

˙̃ξi = Aξ̃i +Bũi (4)

ṽi = λiCξ̃i i = 1, . . . , N

whereλi denotes an eigenvalue ofL. The theorem can be
proven by applying a state-, input- and output-transformation
(Q) to the closed-loop formation, using the eigenvalue de-
compositionL = QΛQ−1 (or the Schur decomposition



L = QUQH), thus resulting in a diagonal (block upper-
triangular) system with the aboveN systems on the diagonal.
Note that since the eigenvaluesλ can be complex the above
theorem requires the simultaneous stabilization of complex
systems.

C. Robust Controller Design Approach

Several distributed design approaches to the formation
control problem have been proposed in the literature. The
methods presented in [8], [12] consider only state-feedback
and are thus not suitable for application to quad-rotor for-
mations because of the large communication overhead. A
powerful design method for distributed controller design
is proposed in [7], but since in the general case (directed
graphs) it requires solving2N output-feedback linear matrix
inequalities (LMIs) together, the design can be very expen-
sive for large formations or agents with many states (each
LMI corresponds to a standardH2 or H∞ output feedback
controller design formulation, see e.g. [10], [13]).

The approach we use here is proposed in [9]. Recalling
that the eigenvaluesλ (of every possible) normalized graph
LaplacianL satisfy

λ = {1 + δλ | δλ ∈ C, |δλ| ≤ 1}

and using a standard approach from robust control [10], one
can represent the group ofN quad-rotors as a single one
with uncertaintyδλ and prove the following theorem.

Theorem 2 A controller KF (s) stabilizes the closed-loop
formation in Fig. 3 for any number of agents and any fixed
communication topology if the systemG(s)

˙̃ξ = Aξ̃ +Bũ

zδ = Cδ ξ̃ (5)

ṽ = Cξ̃ +Dδwδ

wδ = δλIqzδ

is stable for all|δλ| ≤ 1, whereDδCδ = C.

The proof can be found in [9]. The factorization ofC into
Cδ ∈ R

q×n andDδ ∈ R
p×q can be achieved using, e.g.,

singular value decomposition.
Consider now a norm bounded uncertainty∆ ∈ ∆

∆ := {∆ |∆ ∈ C
q×q, ‖∆‖ ≤ 1}

acting onG(s), w = ∆z. The following theorem is adapted
from [9].

Theorem 3 A controller KF (s) stabilizes the closed-loop
formation in Fig. 3 for any number of agents and any fixed as
well as (arbitrary fast) time-varying communication topology
if ‖T (s)‖∞ < 1, whereT (s) = lft (G(s),−K(s)) as
shown in Fig. 4(a).

The above theorem reduces the formation stability prob-
lem to an H∞ design problem for a single quad-rotor
with uncertainty, and guarantees that if a controllerKF (s)
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Fig. 4. LFT interconnection for robust stability design

satisfies the design requirements, any formation (with ar-
bitrary communication topology) will be stable. However
the theorem does not take into account the structure of
the uncertainty (i.e.,∆ = δλIq) and therefore leads to
conservative results. By accounting for the structure of the
uncertainty and using results from [14] one can prove the
following theorem.

Theorem 4 A controller KF (s) stabilizes the closed-loop
formation in Fig. 3 for any number of agents and any fixed as
well as time-varying communication topology if there exists
an invertible matrixD ∈ R

q×q such that

‖DT (s)D−1‖∞ < 1,

whereT (s) = lft (G(s),−K(s)) as shown in Fig. 4(a).

The above theorem results in a scaledH∞ condition and can
be used for controller synthesis using standard robust control
tools.

D. Performance Requirements

Stability by itself is rarely sufficient for satisfactory
control, and usually performance requirements have to be
imposed. In fact, in order to obtain a meaningful formation-
level controller, the performance requirements are a must,as
shown by the next lemma.

Lemma 1 Consider the closed-loop formation in Fig. 3 and
a controller as shown in Fig. 1. There exists a formation-
level controllerKF stabilizing the closed-loop formation if
and only if the closed-loop of the system and the local-
level controllerKL is stable. If, in addition, no performance
requirements are imposed,KF (s) = 0 is such a stabilizing
controller.

Proof: First assume that the local-feedback loop is
unstable. Then, since0 is always an eigenvalue ofL one
of the systems in (4) will be unstable and unobservable,
hence no formation-level controller can stabilize it. Next,
if the local-feedback loop is stable, so are the systems in (4)
and one can selectKF (s) = 0, thus decoupling the systems
while preserving stability.
Next we show how mixed-sensitivity performance require-
ments [13] can be incorporated into the design. The gen-
eralized plantḠ(s) augmented with the exogenous inputs



wP and performance outputszP is shown in Fig. 4(b).
The construction of such a generalized plant with sensitivity
WS(s) and control-sensitivityWK(s) filters is shown in
Fig. 5, wherewP = r.
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ṽ

WK(s)

WS(s)
ũ
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Fig. 5. Generalized plant with performance and uncertaintychannels

Note that the sensitivity filter in the above generalized
plant Ḡ(s) imposes a penalty on the relative errore of the
quad-rotor’s in the formation, i.e.,

ẽ = λ(r̃ − ṽ) = r̃ − ṽ + δλ(r̃ − ṽ).

If one wants to impose a requirement on the error between
the quad-rotor position and the commanded (absolute) posi-
tion r − v instead, one needs to construct a corresponding
generalized plant with̃r− ṽ as output. Because later we use
a virtual-leader approach to give reference for the formation
position we use the relative error.

Consider the closed-loop formation in Fig. 3, but aug-
mented with shaping filters, and letM(s) be the corre-
sponding transfer function. The design steps of transforming
this closed-loop formation to the robust performance system
(Fig. 5) can be summarized as:

1) Diagonalize the closed-loop formatioñM(s) =
Q−1
p M(s)Qp, whereQ(p) = Q⊗ I.

2) Extract the systems̃Mi(s) from the diagonal ofM̃(s).
3) Combine the systems̃Mi(s) to a single system with

uncertaintyM̃(s).

Thus in order to relate the obtained performance in-
dex ‖M̃(s)‖∞ to the performance of the original for-
mation we need to look into the above transformation
steps. SinceM̃(s) includes all M̃i(s) (included in the
uncertainty representation) it follows that‖M̃i(s)‖∞ ≤
‖M̃(s)‖∞. Now, if the eigenvector diagonalization is
used in step 1, the system̃M(s) is diagonal and hence
‖M̃(s)‖∞ = maxi ‖M̃i(s)‖∞ ≤ ‖M̃(s)‖∞. Finally, apply-
ing the Cauchy-Schwartz inequality on the transformation
M̃(s) = Q−1

p M(s)Qp leads to

σ(Q)

σ̄(Q)
‖M̃(s)‖∞ ≤ ‖M(s)‖∞ ≤

σ̄(Q)

σ(Q)
‖M̃(s)‖∞, (6)

whereσ(Q) and σ̄(Q) are correspondingly the smallest and
the largest singular values ofQ.

However, as pointed out in [7], the inequality becomes
equality only if L = LT , which is a (very) small subset of
all possible topologies. Furthermore, even for very simple
communication topologies the Laplacian is defective (e.g.,
the topology in Fig. 2, but with units 4 and 5 removed, has

an eigenvalue with algebraic multiplicity 2 but geometric
multiplicity 1) and henceσ(Q) = 0. If, on the other hand,
the Schur decomposition ofL is used̄σ(Q) = σ(Q) = 1, but
M̃(s) is upper triangular and no (simple) expression relates
‖M̃(s)‖∞ to ‖M̃i(s)‖∞. Nevertheless, although no analytic
guarantees can be given for the formation performance under
every topology, the robust performance design provides con-
trollers stabilizing the formation and achieving good closed-
loop behavior, as demonstrated in Section IV.

III. T HE QUAD-ROTOR HELICOPTER

The aerial vehicle which serves as a basis for the analysis
of the formation control algorithm is an electric quad-rotor
aircraft which can be seen in Fig. 6 together with an earth-
fixed frameE and a body-fixed frameB. We use Euler
angles parametrization, and hence the airframe orientation
in space is given by a rotation matrixR ∈ SO3 from B
to E. We choose the quad-rotor helicopter as a platform for
our formation control framework because it is considered
in many research projects, [15], [16], [17]. The quad-rotor
helicopter is a vertical takeoff and landing vehicle (VTOL)
that has the ability to hover above a desired waypoint. Four
motors are attached to the ends of a rigid frame shaped like
a cross.

The front and rear rotors rotate counter-clockwise while
the left and right rotors rotate clockwise as shown in Fig. 6.
Ideally, gyroscopic effects and aerodynamic torques cancel
out because of this configuration. The altitude of this aircraft
is controlled by the combined throttle input which consists
of the thrust of all four motors. A movement in direction
of the x-axis is achieved by a change of the differential
speed of motorM1 and motorM3, causing the quad-rotor
helicopter to tilt around the y-axis. Similarly, a movementin
direction of the y-axis can be obtained by a change of the
differential speed of motorM2 and motorM4, which causes
the quad-rotor helicopter to tilt around the x-axis. Finally,
rotating the quad-rotor helicopter around the z-axis to cause
a displacement in the yaw angle is achieved by increasing
or decreasing the throttle to the motorsM1 andM3. The
throttle to the motorsM2 andM4 has to be decreased or
increased by the same amount to keep the total thrust and
therefore the altitude constant.

A. Dynamical model

The dynamics of the quad-rotor aircraft are modeled by
the following equations [15]

mẍ = −u sin (θ) (7)

mÿ = u cos (θ) sin (φ) (8)

mz̈ = u cos (θ) cos (φ) −mg (9)

ψ̈ = τψ , θ̈ = τθ, φ̈ = τφ (10)

where x and y describe the position of the quad-rotor
helicopter in the horizontal plane, andz is the vertical
coordinate;φ is the roll angle around the x-axis,θ is the pitch
angle around the y-axis andψ is the yaw angle around the
z-axis;u is the thrust directed out of the center of gravity of
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Fig. 6. Representation of the coordinate system of the quad-rotor helicopter

the aircraft andτφ, τθ andτψ are the torques;m = 0.64 kg is
the total mass of the quad-rotor helicopter andg = 9.81 m/s2

describes the gravitational constant.
Based on the approach in [15], we use the linearized model

with the following state equations

ξ =
[

x ẋ y ẏ z ż ψ ψ̇ θ θ̇ φ φ̇
]T
.

The control inputs are defined as follows

[

u1 u2 u3 u4

]T
=

[

u−mg τψ τθ τφ
]T
.

The state equation can be written asξ̇ = f(ξ, u). Now
assume thatξ = 0 is an equilibrium point withf(0, 0) = 0.
The first order Taylor expansion at the origin yields the linear
system

ξ̇ = Aξ +Bū (11)

where

ū =
[

u1 u2 u3 u4

]T
.

B. Control strategy and simulation results

Using the linearized model of Section III-A, one can
design a linear controller to stabilize a single quad-rotor
helicopter. We assume that the sensors of the quad-rotor are
capable of measuring all the states of the model. Therefore
we choose a full state feedback LQR controlleru = −KLξ.
The choices of the weighting matricesQ andR, as well as
the state feedback controllerKL can be found in Appendix
A.

To verify closed-loop stability of a single quad-rotor
helicopter we perform a simulation with the initial conditions

(xi, yi, zi, ψi, θi, φi) = (−10 m, 10 m, 0 m, 50◦, 20◦, 20◦) .

The new setpoint is

(xd, yd, zd, ψd, θd, φd) = (0 m, 0 m, 10 m, 0◦, 0◦, 0◦) .

Figs. 7 and 8 show the results of the simulation.
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IV. SIMULATION RESULTS OF A FORMATION FLIGHT

This section shows an application of the proposed design
method in Section II. For the linear model of a quad-rotor
given in Section III-A and the stabilizing controllerKL

obtained above we design a controllerKF using a S/KS
mixed sensitivity approach in order to meet performance
requirements.

The output signal of the formation contains translational
position information of the quad-rotor helicopters (x-, y-
andz-positions), weighted by sensitivity shaping filters. The
filter for control sensitivity uses all four inputs of the quad-
rotor helicopter. Both filters are given in Appendix B. The
H∞-norm betweenwδ and zδ (see Fig. 4.a) smaller than 1
means that the formation is robust against sudden changes
in the communication topology and moreover, the formation
reaches the desired waypoint in a specified time with a small
steady-state error.

In our simulation the communication topology suddenly
changes three times each at 10, 20 and 30 s. In this simulation
we use a target waypoint with no dynamics to force the
quad-rotors to approach an absolute position. Due to space
constraints only the results for the x-axis are given in Fig.
9. The simulation shows that after 15 s the whole group
of agents reaches the relative positions of the prespecified
formation although there has been a change in the commu-
nication topology already. In addition, the formation is able
to handle multiple changes in the communication topology,



and continues to approach the waypoint. The comparison
between the simulation results for the single quad-rotor and
the formation response illustrates the price in terms of speed
of response that has to be paid for guaranteeing stability for
all possible communication topologies. A movie showing the
simulated flight of the formation is available at the website:
http://www.tu-harburg.de/rts – “Material without password”
– “Formation control”.
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Fig. 9. Simulated x-positions of the formation

V. CONCLUSIONS ANDFUTURE WORK

In this paper the design of local controllers for a formation
of identical vehicles is investigated in a case study - here a
formation of dynamically unstable and under-actuated quad-
rotor helicopters is considered.

The quad-rotors themselves are stabilized by local con-
trollers. In addition, local formation controllers - designed
as robust controllers for a single vehicle with uncertainty-
guarantee stability of the whole formation of vehicles for
any time-varying communication topology and any number
N of units. Performance requirements are incorporated into
the design using mixed-sensitivity loop shaping. It can also
be shown that the formation is robust to arbitrary switches
in the communication topology.

Nevertheless the robustness against all time-varying com-
munication topologies provided by the distributed controller
synthesis approach used here may result in an inferior system
performance if the communication topology is known, or
if the class of admissible topologies is restricted. Future
research will aim at reducing this conservatism by designing
controllers that incorporatea priori knowledge about topolo-
gies that are not admitted.

APPENDIX

A. LQR controller

The weighting matrices of the LQR controller are
R = diag(100, 0.1, 25, 25) and
Q = diag

(

0.04, 1, 0.04, 1, 0.5, 20, 0.25, 1, 103, 50, 103, 50
)

.

The controller in Section III-B has the following form

KL =
[

KL1 KL2

]

, KL1 =

[

02×4

I2 ⊗
[

−0.04 −0.33
]

]

KL2 = diag(
[

0.07 0.54
]

,
[

5.00 10.49
]

, I2 ⊗
[

8.16 4.28
]

).

B. Mixed-sensitivity design

The sensitivity and control sensitivity weighting filters are

WS = I3 ⊗

(

3.333

s+ 0.01

)

, WK = I4 ⊗

(

102 s+ 103

s+ 106

)

.

The designedH∞ controller is of19th order. The robust per-
formance and robust stabilityH∞ norms are correspondingly

‖DT̄ (s)D−1‖∞ = 3.226 and‖T̄zδwδ
(s)‖∞ = 0.9946 < 1.
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