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Abstract—In this paper we present an application of a compensating the error of the quad-rotor in the forma-
recently developed strategy for robust distributed contrdler tion.
design for formations and show a way of including performane
requirements in the design. The proposed synthesis method - - - - _ __

guarantees stability for all possible formations and arbitary e; : u; f; Quad-rotor | Vi
fast changes in the communication topology. The number of — Kp . [
agents in the formation can also be chosen arbitrarily. We i modeli !
illustrate the results by performing a simulation of a formation : Block :
flight of quad-rotor helicopters. :d' |,
‘diagram of Ky, ‘
|

uad-rotor;
. INTRODUCTION quadrotor L T

Advances in the field of computation and communication Fig. 1. Single quad-rotor and its controller
technologies as well as the ongoing process of miniaturiza-
tion of embedded systems have sped up the developmentiere we use a 6-DOF linear model of the quad-rotor
of multi-agent systems. It is characteristic for multi-age helicopters, and the graph-theory framework proposed]in [6
systems that they are capable of communicating with eaé® model the communication-topology between them. For a
other to accomplish a common goal. Furthermore they aftxed number of LTI agents and known (and fixed) com-
dynamically decoupled from each other and can interagfunication topology there are numerous controller design
autonomously with their environment. It seems to be nafethods in the literature, see, e.g., [7], [8]. Howeverceain
ural that multi-agent systems can perform tasks which ai@ practice the numbeN of quad-rotors in the formation can
beyond the capabilities of one agent. Besides unmanngary With the specific task, and the communication topology
aerial vehicles (UAVs) that are considered in this papefight change during operation (agents getting far away,
application areas include autonomous underwater vehiclBsoken communication links, etc.), here we use a result on
[1], [2], mobile robotics [3], automated highway systemp [4robust design proposed in [9]. This method guarantees that a
and satellite formation flying [5]. formation controllerK r satisfying the design requirements,

A|though distributed systems suﬁer from |atency and\”” Stabilize any formation (W|th arbitrary number Of agen
depend on the structure of the communication topology, th@hd time-varying communication topology) with a given
requiring a more complex controller synthesis, they previdtype of agent. We show how to extend the method to

numerous advantages compared to centralized systems: handle performance requirements, such as mixed-sengsitivi
« the failure of one agent does not inevitably mean that th%o_lrfﬁterar'gg‘:’ E)lfot]ﬁe paper is organized as follows. Section Ii
issi lish h Iti- . . : .
g:ﬁ;mn to be accomplished by the multi-agent SySterHrlefly recalls the graph-theoretical framework proposed i
a sir,1 le agent can be easilv replaced: [6] and the robust design method from [9], and shows how
* the n%mbgr of agents can )()e gltered, according to tﬁg incorporate performance requirements in the latter. The
specified task: introduction of the quad-rotor system and the design of the
less computat’ional power and communication capabillpcal feedback controllek ;, is carried out in Section Ill. The
ties required design of the formation-level controlléi» and simulation

. ) ) . ] results are presented in Section IV. Finally, conclusioms a
In this paper we consider a formation of identical grawn and an outlook to future work is given in Section V.
quad-rotor helicopters that can communicate with eachrothe The following notation will be used throughout the paper:

to achieve the common goa_l. FL_thher, each quad-rotor E denotes thep x p identity matrix; RP*4, CPX4 are,
controlled locally, as shown in Fig. 1. The controller ha%orrespondingly, the sets pfx ¢ real and complex matrices;

two components: diag(z1, ..., =,) indicates am x n diagonal matrix with
o K is a local feedback controller, used to internallythe elements:; to x,, on the diagonalr is the Kronecker
stabilize the quad-rotor, product; Iff P(s), K(s)) denotes the lower linear fractional

o K is a “formation-level” controller, receiving and transformation ofP(s) with K(s) (see, e.g., [10]).



II. FORMATION MODELING AND CONTROLLERDESIGN « all eigenvalues\; of L lie in a unit disk centered at
In this section we review the framework for formation 170 in the complex plane (the so called Perron disk),

control proposed in [6] and the controller design approach ¢ for undirected graphé has only real eigenvalues.

for stabilization of all formations proposed in [9]. Then we Collecting reference, output and error vectors for the

show how performance requirements can be incorporatedwhole formation in a single column vector, (e.g. =

T 71T . .
A. Communication Topology and Graph-Theory [vf ... v§]"). equation (1) can be rewritten as

Consider a formation ofV identical quad-rotors that are e=Ly(r—v)=T—Lyv )

communicating with each other. As in [6], the Communi'whereL( | = L @ I,; herep is the number of outputs of
cation topology is represented as a directed graph, whe&a (in thep above the number of selected outputp is 3).
the nodes are the quad-rotors and the vertices are @ that since 0 is always an eigenvaluelofL,) is rank
communication links; an example is shown in Fig. 2. deficient and the same formation shapecorresponds to
ol multiple absolute coordinatas
5 / \ 9 The quad-rotor formation closed-loop system is shown in
o o Fig. 3, whereH (s) includes everything in the dashed box in
Fig. 1. Note that the only exchange of information between
the quad-rotors occurs via the communication channels, i.e

through L.
10 o 3 9NL(p)
Fig. 2. Graph representation of a formation with = 5 quad-rotors. In el > H(s) U1 >
this example quad-rotor 3 receives information from quatdsr2 and sends
information to quad-rotors 1, 2 and 4 r e v
_ o — L) :
In the following we assume no communication delays, or . v
if any, they are fixed and accounted for in the quad-rotor N, H(s) N
dynamics.
Let J; denote the set of quad-rotors (neighbors) from
which quad-rotor; receives information, andl7;| its size _ _ _
(the number of sensed neighbors). Then one measure of the Fig. 3. Closed-loop representation of the formation
relative error of quad-rotarin the formation is the weighted
sum of the errors towards the sensed neighbors B. Closed-Loop Formation Stability
o — 1 Z . 1) Definition 1 A formation is called stable, if all poles of the
A ik closed-loop interconnection in Fig. 3 are strictly in thdtle

i half-plane.
The terme;;, is the error between theth andk-th unit

Let the stable dynamics of the closed-loop system formed
by each quad-rotor and its local controll&r, be described
where r; is a commanded absolute position for agent by
7, iIs @ commanded (directional) offset between quad-rotor ¢ = A¢, + Bus 3)
helicopters andk which defines the desired formation given ! ! !
in relative coordinates, and; is the transmitted output of v = C&; i=1...,N
quad-rotori. Here we assume that the outputsare the \yhered ¢ R"*", B ¢ R**! andC € RP*™.
coordinates of the quad-rotoin the z, y andz coordinates | et the formation-level controller be an LTI controller
(e, vi = [z; y; 2] ), but this can be easily extended i, (s), such thatu;(s) = Kr(s) e;(s). The following result
to include the quad-rotor orientations also. is adapted from [6].

In this paper we represent the communication topology

using the normalized graph Laplacian matdix which is  Theorem 1 The controllerK x(s) stabilizes the closed-loop

eik = (1i — ;) — (Tp — vg) = iy — (vi — vg)

defined as follows formation (Fig. 3) if and only if it simultaneously stab#iz
1, if i =k the set of N systems
Lik: _‘Tlip ke\Z .L‘_ : _
The important properties af, which simplify the controller v =Xl i=L....N
synthesis later on, are (see [6], [11]) where \; denotes an eigenvalue @f. The theorem can be

« zero is an eigenvalue df if the formation has no leader proven by applying a state-, input- and output-transforomat
(i.e., there is no agent that does not receive informatioft)) to the closed-loop formation, using the eigenvalue de-
from any of the other agents), composition L = QAQ~! (or the Schur decomposition



L = QUQM), thus resulting in a diagonal (block upper- a1,

triangular) system with the abové systems on the diagonal.  ws Zs e .
Note that since the eigenvalugscan be complex the above - 7--------|- v ow  'ws Z5 1 4
theorem requires the simultaneous stabilization of cormple 1 L : ~ -
systems. — G(s) ! e G(s) |2p
| R |

C. Robust Controller Design Approach :ﬂ }I | iﬂ|: :|é:

Several distributed design approaches to the formation ' —Kr(s) =— € w1 Er(s) |
control problem have been proposed in the literature. The \T'(s) — ! T(s)——— |
methods presented in [8], [12] consider only state-feekibac (@) (b)
and are thus not suitable for application to quad-rotor for-
mations because of the large communication overhead. A Fig. 4. LFT interconnection for robust stability design

powerful design method for distributed controller design
|sraprrc]>£)o iﬁg ISirgs],ng/tin%r]]\fiLj? ST_?egggzrcil”%f; r(T?;rt?iitesdatisfies the design requirements, any formation (with ar-
grap 9 b bitrary communication topology) will be stable. However

inequalities (LMIs) together, the design can be very exper@Ee theorem does not take into account the structure of

sive for large formations or agents with many states (ea(i e uncertainty (iLe.A — dy1,) and therefore leads to
e A = 4

LMI corresponds to a standaid, or H,, output feedback . .
. . conservative results. By accounting for the structure ef th
controller design formulation, see e.g. [10], [13]). : .
) ; . uncertainty and using results from [14] one can prove the
The approach we use here is proposed in [9]. Recalli .
) : : llowing theorem.
that the eigenvalues (of every possible) normalized graph

LaplacianL satisfy Theorem 4 A controller K (s) stabilizes the closed-loop

A={1+465 |6y €C, |0x] <1} formation in Fig. 3 for any number of agents and any fixed as

well as time-varying communication topology if there exist
and using a standard approach from robust control [10], org, invertible matrixD € R?%? such that
can represent the group @é¥ quad-rotors as a single one .
with uncertaintyd, and prove the following theorem. DT (s)D™" [loo < 1,
whereT'(s) = Ift (G(s), —K(s)) as shown in Fig. 4(a).
Theorem 2 A controller K (s) stabilizes the closed-loop ] N
formation in Fig. 3 for any number of agents and any fixed "€ above theorem results in a scaléd, condition and can

communication topology if the systef{s) {Je :Jsed for controller synthesis using standard robustalont
) ools.
&= Afj’ Bu D. Performance Requirements
7= Cﬁf () Stability by itself is rarely sufficient for satisfactory
0 = C& + Dsws control, and usually performance requirements have to be
ws = 6xIyzs imposed. In fact, in order to obtain a meaningful formation-
level controller, the performance requirements are a nasst,
is stable for all[d,| < 1, where DsC;s = C. shown by the next lemma.

The proof can be found in [9]. The factorization 6f into
Cs € R?™ and Ds € RP*? can be achieved using,
singular value decomposition.

Consider now a norm bounded uncertaidtye A

Lemma 1 Consider the closed-loop formation in Fig. 3 and
€.8-a controller as shown in Fig. 1. There exists a formation-
level controller K stabilizing the closed-loop formation if
and only if the closed-loop of the system and the local-
A:={A|AecC™ |A| <1} level controllerK;, is stable. If, in addition, no performance
requirements are imposed»(s) = 0 is such a stabilizing
acting onG(s), w = Az. The following theorem is adapted controller.
from [9].
om [ Proof: First assume that the local-feedback loop is
Theorem 3 A controller Kx(s) stabilizes the closed-loop Unstable. Then, since is always an eigenvalue af one
formation in Fig. 3 for any number of agents and any fixed a8f the systems in (4) will be unstable and unobservable,

well as (arbitrary fast) time-varying communication topgy hence no formation-level_controller can stabilize it. N_ext
it [|T(s)]lsc < 1, whereT(s) = Ift (G(s),—K(s)) as if the local-feedback loop is stable, so are the systems)in (4

shown in Fig. 4(a). and one can seledtr(s) = 0, thus decoupling the systems
while preserving stability. [ |
The above theorem reduces the formation stability probiNext we show how mixed-sensitivity performance require-
lem to an H., design problem for a single quad-rotorments [13] can be incorporated into the design. The gen-
with uncertainty, and guarantees that if a controliér(s) eralized plantG(s) augmented with the exogenous inputs



wp and performance outputsp is shown in Fig. 4(b). an eigenvalue with algebraic multiplicity 2 but geometric

The construction of such a generalized plant with sengitivi multiplicity 1) and hences(Q) = 0. If, on the other hand,

Ws(s) and control-sensitivitylVi (s) filters is shown in the Schur decomposition df is useds (Q) = o(Q) = 1, but

Fig. 5, wherewp = r. M(s) is upper triangular and no (simple) expression relates
[M(s)]|oo to || M;(s)|s. Nevertheless, although no analytic

Zs guarantees can be given for the formation performance under
every topology, the robust performance design provides con
trollers stabilizing the formation and achieving good elds

Zp loop behavior, as demonstrated in Section IV.

\

~ IIl. THE QUAD-ROTOR HELICOPTER

The aerial vehicle which serves as a basis for the analysis
of the formation control algorithm is an electric quad-roto

Fig. 5. Generalized plant with performance and uncertaitignnels aircraft which can be seen in Fig. 6 together with an earth-

fixed frame E and a body-fixed frame3. We use Euler

Note that the sensitivity filter in the above generalizedngles parametrization, and hence the airframe orientatio
plant G(s) imposes a penalty on the relative erkoof the in space is given by a rotation matri® € SO3 from B
qguad-rotor’s in the formation, i.e., to £. We choose the quad-rotor helicopter as a platform for
our formation control framework because it is considered
in many research projects, [15], [16], [17]. The quad-rotor

If one wants to impose a requirement on the error betwed}§licopter is a vertical takeoff and landing vehicle (VTOL)
the quad-rotor position and the commanded (absolute) po&ftat has the ability to hover above a desired waypoint. Four
tion r — v instead, one needs to construct a correspondiﬁBOtorS are attached to the ends of a rigid frame shaped like
generalized plant withf — ¢ as output. Because later we use? CrOSS. _ _

a virtual-leader approach to give reference for the forarati  1he front and rear rotors rotate counter-clockwise while
position we use the relative error. the left and right rotors rotate clockwise as shown in Fig. 6.

Consider the closed-loop formation in Fig. 3, but augjdeally, gyroscopic effects and aerodynamic torques dance
mented with shaping filters, and 1&I(s) be the corre- out because of this configuration. The altitude of this aiftcr
sponding transfer function. The design steps of transfogmi is controlled by the combined throttle input which consists

this closed-loop formation to the robust performance syste©f the thrust of all four motors. A movement in direction
(Fig. 5) can be summarized as: of the x-axis is achieved by a change of the differential

speed of motorM/; and motorM3, causing the quad-rotor
helicopter to tilt around the y-axis. Similarly, a movemant
direction of the y-axis can be obtained by a change of the
! ) - differential speed of motoi/, and motori,, which causes

3) Combm'e the systema/;(s) to a single system with the quad-rotor helicopter to tilt around the x-axis. Fipall

uncertaintyM(s). rotating the quad-rotor helicopter around the z-axis tcseau

Thus in order to relate the obtained performance ing displacement in the yaw angle is achieved by increasing
dex [|[M(s)||« to the performance of the original for- or decreasing the throttle to the motat$, and M. The
mation we need to look into the above transformatiogrottle to the motorsi, and M, has to be decreased or
steps. SinceM (s) includes all M;(s) (included in the jncreased by the same amount to keep the total thrust and
uncertainty representation) it follows thatV/;(s)[-c < therefore the altitude constant.
[ M(s)||. Now, if the eigenvector diagonalization is
used in step 1, the systelvi(s) is diagonal and hence A. Dynamical model
[M(8)]|oo = max; [[M;(s)|l < [[M(s)||l- Finally, apply-  The dynamics of the quad-rotor aircraft are modeled by
ing the Cauchy-Schwartz inequality on the transformatiothe following equations [15]
M(s) = Q,'M(s)Q, leads to

E=AF—D) =7 —0+0\(F— D).

1) Diagonalize the closed-loop formatiob(s) =
Qp "M(s)Qy, whereQ,) =Q® 1. .
2) Extract the systema/;(s) from the diagonal oM(s).

B md = —usin () @

ZNIT ) < MO < DD ITGes 6 i = wcos (9)sin (9 ®

= mZ = wucos (0) cos (¢) — mg 9

whereo(Q) anda(Q) are correspondingly the smallest and b=y —— é =14 (10)

the largest singular values ¢J.
However, as pointed out in [7], the inequality becomesvhere » and y describe the position of the quad-rotor
equality only if L = LT, which is a (very) small subset of helicopter in the horizontal plane, and is the vertical
all possible topologies. Furthermore, even for very simpleoordinatej is the roll angle around the x-axiéjs the pitch
communication topologies the Laplacian is defective (e.gangle around the y-axis and is the yaw angle around the
the topology in Fig. 2, but with units 4 and 5 removed, hag-axis;u is the thrust directed out of the center of gravity of



TM3

Ms
Fig. 6. Representation of the coordinate system of the qgoiga-helicopter
the aircraft and, 75 andr,, are the torquesn = 0.64 kg is

the total mass of the quad-rotor helicopter gne 9.81 m/s?
describes the gravitational constant.

Based on the approach in [15], we use the linearized model

with the following state equations
[zxyyzzz/;zb@@qﬁqﬁ}

The control inputs are defined as follows

T

T T
[ul U2 U3 U4] —[u—mg Ty TH 7'¢]
The state equation can be written &s= f(&,u). Now
assume thaf = 0 is an equilibrium point withf(0,0) = 0.
The first order Taylor expansion at the origin yields thedine
system

£ = A¢ + Bu (11)

where

u = ]T

[u1 uz uz uy

B. Control strategy and simulation results

Stabilization using LQR control

x—, y— and z-positions

—x—pbsition [m]
|- = y—position [m]

- - =z—position [m]

10 20 30

0 40 50
Time [s]
Fig. 7. Position of the quad-rotor helicopter
Stabilization using LQR control
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Fig. 8. Orientation of the quad-rotor helicopter

IV. SIMULATION RESULTS OF A FORMATION FLIGHT

This section shows an application of the proposed design
method in Section II. For the linear model of a quad-rotor
given in Section IlI-A and the stabilizing controllek,
obtained above we design a controll&rr using a S/KS
mixed sensitivity approach in order to meet performance
requirements.

The output signal of the formation contains translational
position information of the quad-rotor helicopters-,( y-

Using the linearized model of Section IlI-A, one can@ndz-positions), weighted by sensitivity shaping filters. The
design a linear controller to stabilize a single quad-rotdflter for control sensitivity uses all four inputs of the glia
helicopter. We assume that the sensors of the quad-rotor 4R0r helicopter. Both filters are given in Appendix B. The
capable of measuring all the states of the model. Therefofés-NOrm betweenss and z; (see Fig. 4.a) smaller than 1

we choose a full state feedback LQR controlles —K.£.
The choices of the weighting matricés and R, as well as
the state feedback controlléf; can be found in Appendix
A.

To verify closed-loop stability of a single quad-rotor
helicopter we perform a simulation with the initial conditis

(xia Yiy Zis l/%‘, giv (bl) = (_]—O m, 10 m, 0 m, 5()0’ 2()0’ 200) .
The new setpoint is
(]Jd, Yd, Zd;, 1/}(17 9(17 ¢d) = (0 m, 0 m, 10 m, 007 007 OO) .

Figs. 7 and 8 show the results of the simulation.

means that the formation is robust against sudden changes
in the communication topology and moreover, the formation
reaches the desired waypoint in a specified time with a small
steady-state error.

In our simulation the communication topology suddenly
changes three times each at 10, 20 and 30 s. In this simulation
we use a target waypoint with no dynamics to force the
guad-rotors to approach an absolute position. Due to space
constraints only the results for the x-axis are given in Fig.
9. The simulation shows that after 15 s the whole group
of agents reaches the relative positions of the prespecified
formation although there has been a change in the commu-
nication topology already. In addition, the formation ideab
to handle multiple changes in the communication topology,



and continues to approach the waypoint. The comparisonThe controller in Section I11-B has the following form

between the simulation results for the single quad-rotar an

the formation response illustrates the price in terms oédpe Kr = [Kr1 Kia,
of response that has to be paid for guaranteeing stability quL

all possible communication topologies. A movie showing the
simulated flight of the formation is available at the wehsite
http://www.tu-harburg.de/rts — “Material without passva3

— “Formation control”.

2 = diag([0.07  0.54] , [5.00

_ O2x4
"7 | L®[-0.04 —0.33]

10.49] , > ® [8.16  4.28]).

Ky,

B. Mixed-sensitivity design

The sensitivity and control sensitivity weighting filtenea

Simulation of a formation flight

X—positions

(1]

0 10 20 30 40 50 [2]

time [s]

Fig. 9. Simulated x-positions of the formation

(3]

V. CONCLUSIONS AND FUTURE WORK

In this paper the design of local controllers for a formation!*!
of identical vehicles is investigated in a case study - here g,
formation of dynamically unstable and under-actuated guad
rotor helicopters is considered.

The quad-rotors themselves are stabilized by local congg)
trollers. In addition, local formation controllers - deséey
as robust controllers for a single vehicle with uncertainty 7
guarantee stability of the whole formation of vehicles for
any time-varying communication topology and any number
N of units. Performance requirements are incorporated intd’!
the design using mixed-sensitivity loop shaping. It car als
be shown that the formation is robust to arbitrary switched9]
in the communication topology.

Nevertheless the robustness against all time-varying comy
munication topologies provided by the distributed corérol
synthesis approach used here may result in an inferiorraysté*!l
performance if the communication topology is known, of12]
if the class of admissible topologies is restricted. Future
research will aim at reducing this conservatism by des'rgnin[ls]
controllers that incorporat priori knowledge about topolo-

gies that are not admitted. [14]
APPENDIX
[15]
A. LQR controller
The weighting matrices of the LQR controller are
R =diag(100,0.1,25,25) and [16]
Q = diag(0.04,1,0.04,1,0.5,20,0.25,1,10% 50, 10?,50) .
[17]

WSZI3®<

3.333

s+ 103
i =7 102 .
s—i—0.0l)’ Wi 4®<0 >

s+ 106

The designed{,, controller is of19"" order. The robust per-
formance and robust stability/ ., norms are correspondingly

DT (5)D ™ |oo = 3.226 and || T.,uw; (5) [ 0o = 0.9946 < 1.
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