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Abstract: This article presents an identification technique for distributed systems with identical
units using linear recurrent neural networks and exploiting the replicated structure of the
units inside the system. The proposed method is applicable both to open-loop and closed-loop
identification, takes into consideration boundary conditions and available information about
the structure of the system, and is capable of identifying systems with heterogeneous units.
The approach provides parameters estimate with minimum bias for unstable plant models when
there is additive colored noise in the data. The method is described for two-dimensional systems
(one for time and one for space), but is equally applicable to systems having more dimensions
in space. The effectiveness of the method is demonstrated by two examples.

1. INTRODUCTION

In the recent years there has been a renewed interest in
distributed control of complex engineering systems that
are multi-dimensional and composed of identical subsys-
tems which interact with each other. Examples of such
systems include flexible structures [Wu and Yildizoglu,
2005], fluid and heat flow [Chughtai and Werner, 2008b],
multi-agent systems [Olfati-Saber et al., 2007], satellite
formations, systems characterized by the same class of
partial differential equations, etc.

There exists a vast literature on controller synthesis for
such distributed systems. A small sample of it includes
distributed controller synthesis techniques for spatially
invariant systems in Fourier domain [Bamieh et al., 2002],
a separability-based method for systems with temporal
and spatial dimensions [Gorinevsky et al., 2008] as well
as various LMI techniques for spatially invariant systems
[D’Andrea, 1999; D’Andrea and Dullerud, 2003; Chughtai
andWerner, 2008a; Massioni and Verhaegen, 2009a; Popov
and Werner, 2009].

However, in order to reliably apply any of the above
synthesis techniques an accurate system model is needed.
If accurate distributed models are not available from first
principles it is important to have a method to identify
such a model from measured data. Relatively few results
are available in the literature for identification of two-
dimensional (2-D) and multi-dimensional distributed sys-
tems. Identification of transfer function models of 2-D
causal systems is presented in [Chen and Kao, 1979], while
identification of 2-D and multi-dimensional non-causal ra-
tional transfer functions is given in [Arun et al., 1987],
[Krogmeier and Arun, 1989]. However the latter ones are
difficult to apply due to their dependence on the impulse
response of the system. State-space-based identification

methods for distributed interconnected systems have been
proposed recently in [Massioni and Verhaegen, 2008] and
[Massioni and Verhaegen, 2009b], but these apply only to
a special class of distributed systems, namely distributed
decomposable systems or circulant systems. Moreover, ex-
tending all these methods to identify systems with noisy
data or identifying them in closed-loop is questionable.

A more general least-squares-based identification method
for 2-D open-loop systems has been proposed in [Ali et al.,
2009]. For identification of unstable systems a closed-
loop identification method is needed [Ljung, 1999]. The
indirect methods proposed in [Li et al., 2006] and [d. Hof
and d. Callafon, 1996] do not suffer from bias due to
noise correlated with the input signal, as the input signal
for identification is taken to be an external reference
signal, but they need to impose restrictive assumptions
on the plant and controller in order to separate them.
Finally a linear recurrent neural networks (LRNN) based
method has been proposed in [Ali et al., 2010a]. The
method identifies each subsystem separately and then uses
iterations until the parameters of all subsystems converge
to the same values. Due to the use of LRNN the plant
model can be directly extracted, but the method suffers
from bias, since the interconnection signals from neighbors
are considered as external signals and obtained from noisy
measured data.

A way to avoid the above mentioned problems is to
identify the distributed system as a whole, where the
available knowledge of the system is used to define the
connections between the units/subsystems. In this case
the interconnecting signals will be estimated internally and
will be not corrupted by measurement noise. However, by
doing so the identified system will not necessarily be a
connection of identical units, as during the neural networks
(NN) training process the weights will be adjusted in such



a way that the output error is minimized, but without
requiring them to be identical.

In this paper we present a LRNN-based method for identi-
fication of distributed systems that have identical subsys-
tems. The method uses the available knowledge of the sys-
tem in that one defines the interconnection topology and
the identical structure of the subsystems. Then a model
for the complete system is identified under the constraint
of identical units. Finally, the model of a single unit can
be extracted from the obtained model of the system. The
advantages of this approach are fourfold.

• The approach is applicable to both open-loop and
closed-loop identification. The main advantage is the
identification of unstable plant models by using the
approach as indirect closed-loop identification tool.

• An accurate model is obtained, as the interconnection
signals between the subsystems are not considered as
external, noise corrupted, measured signals.

• Consistent identification can be provided under col-
ored noise condition even without identifying a noise
model.

• The method exploits the complete knowledge of the
system, including boundary conditions and structural
“anomalies” (e.g., heat propagation in a metal plate
with a hole – the hole representing the anomaly in
the otherwise uniform structure).

• The method allows identifying distributed and in-
terconnected systems with heterogeneous subsystems
(e.g., a supported beam, part of which is constructed
of one material and other part of a different material).

In order to simplify the notation the paper discusses 2-D
systems that have one temporal and one spatial dimension
(e.g., supported beams, heat propagation in rods, etc.),
but the proposed methods are valid also for systems with
a higher number of spatial dimensions, as well as space
invariant systems.

The rest of the paper is organized as follows. Section
2 offers a brief introduction to 2-D distributed systems.
Section 3 presents the proposed LRNN identification ap-
proach and the required changes to the standard back-
propagation training algorithm for NN. Section 4 illus-
trates the approach on both open-loop and closed-loop nu-
merical examples. Finally conclusions are drawn in Section
5.

The following standard notation is used throughout the
paper. In denotes the n× n identity matrix; Rn×m is the
set of n×m real matrices; Aij denotes element (ij) of the
matrix A.

2. PRELIMINARIES

Let r(k, j) be the two-dimensional discrete-time input
signal to a linear invariant 2-D data generating single
input single output (SISO) system, as the one shown in
Fig. 1 and Fig. 2, where k and j are independent variables
representing temporal and spatial indices respectively.
Then the output y(k, j) of the system can be represented
in difference equation form, as a linear combination of
weighted input-output values [Glentis et al., 1994], as

y(k, j) =−
∑

(ia,ib)∈M
y

0

aia,ib y(k − ia, j − ib)

+
∑

(ia,ib)∈Mr

bia,ib r(k − ia, j − ib) + v(k, j). (1)

Here My and M r denote support regions (masks) for out-
put and input terms, respectively with My

0 = My\(0, 0)
and v(k, j) is colored noise (Filtered 2-D zero-mean white-
noise with normal distribution). The support region is
defined as a subset of the two-dimensional space in which
the indices of the coefficients of input and output terms
in the difference equation lie. A general support region
for 2-D systems lies in the 2-D plane. For causal systems
the support region is a subset of first quadrant and for
semi-causal (causal in time, but non-causal in space) the
support region is a subset of the right half plane. For the
details of masks description see [Ali et al., 2010b].
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Figure 1. Interconnection of a 2-D system with J units

In 2-D, equation (1) and Fig. 2 the noise free process can
be represented in a transfer function form as

G(q, p) =
B(q, p)

A(q, p)
, (2)

with

B(q, p) =
∑

(ia,ib)∈Mr

bia,ibq
−iap−ib (3)

A(q, p) = 1 +
∑

(ia,ib)∈M
y

0

aia,ibq
−iap−ib , (4)

where q and p are forward shift operators in the first and
second dimension, respectively (i.e., time and space).

Let θ represent the vector of model parameters, which is
constructed by stacking columnwise aia,ib ∀(ia, ib) ∈ My

0 ,
bia,ib ∀(ia, ib) ∈ Mu, and ŷ(k, j, θ) is the predicted output.
Then the prediction error is

ǫ(k, j, θ) = y(k, j)− ŷ(k, j, θ).

In Fig. 2 H(q, p) is 2-D linear stable filter having monic
numerator and denominator polynomials with specific
masks. The problem of identifying a model for the system
can then be stated as follows:
Given a set of input and output data

ZNK×NJ =

{

[r(k, j), y(k, j)],
k = 1, . . . , NK

j = 1, . . . , NJ

}

estimate a parameter vector θ by minimizing the quadratic
criterion



V (Z, θ) =
1

2NKNJ

NJ∑

j=1

NK∑

k=1

ǫ2(k, j, θ). (5)

This scheme is a prediction error method (PEM), [Ljung,
1999], as the objective is to minimize a sum over a norm
of the prediction error.

y0(k, j)
r(k, j) G(q, p)

H(q, p)

e(k, j)

y(k, j)

Figure 2. Two-dimensional data generating system

3. IDENTIFICATION OF 2-D INTERCONNECTED
SYSTEMS

In this section we present a method to identify 2-D dis-
tributed systems based on linear recurrent neural networks
(LRNN). The method has the advantage that an unbiased
parameter estimate is obtained even if there is additive
output colored noise in the data. By using LRNN we are
solving the problem as pseudo-linear [Ljung, 1999] as the
regressor contains terms which depend on the parameter
to be estimated. We also discuss the consistency of the
approach in this section. A further motivation to use
LRNN is the fact that it offers an indirect closed-loop
identification of 2-D distributed systems – the plant and
controller models are obtained separately. Furthermore
there is no restriction on the controller structure.

We propose a method for training a LRNN with identical
weights for several layers, in a closed-loop identification
framework where open-loop identification can be viewed
as a special case. Hence, assume that each unit j =
1, . . . , NJ is controlled/stabilized locally and the controller
coefficients are fixed and known. A reference input r(k, j)
is applied to the system and the outputs y(k, j) are
measured. The system interconnection is shown in Fig.1.
Fixing the signals y(k, 0) and y(k,NJ + 1) represents
boundary conditions to the system.

Under the assumption of linearity, a single unit/subsystem
of the system could be modeled via LRNN, as shown in
Fig. 3, where for simplicity a proportional controller (only
static gains) is shown. Clearly, a controller with higher
order temporal or/and spatial dynamics, as well as 3-D
and higher dimensional systems, can also be modeled in
a similar manner. In case that there is no local controller
present the controller block will be empty and reference
signal r will be entering the system directly (open-loop
case). Given the input signal r(k, j) and output signal
y(k, j), k = 1, . . . , NK , j = 1, . . . , NJ , one could construct
a LRNN network corresponding to the interconnection
in Fig. 1, where each unit is as in Fig. 3. A successive
training of the network will adapt the weights bjib,0, a

j
ia,+1,

ajia,-1 and ajif ,0, ∀ ib ∈ {0, . . . , nb}, ia ∈ {0, . . . , na}, if ∈

{1, . . . , na}, (that is, all weights with a white arrow) in
order to minimize the performance index (5). Once the
training of these M = NJ(3na + nb + 3) weights is

completed, a model of the complete system is obtained.
As, in the general, the training is performed with imperfect
measurements the optimal coefficients of the NJ units are
different. In other words, one has obtained a model, which
might provide a good description of the overall system,
but from which no unique model of a single unit can be
extracted.

This problem can be remedied by exploiting the identical
nature of the units during the training process. In order to
do so, one has to impose that the corresponding weights
in the layers of the NJ units are indeed identical, i.e.,
∀j ∈ {1, . . . , NJ}, the following should hold

bjib,0 =bib,0, ∀ib ∈ {0, . . . , nb}, (6)

ajia,+1 =aia,+1, ∀ia ∈ {0, . . . , na}, (7)

ajif ,0 =aif ,0, ∀if ∈ {1, . . . , na}, (8)

ajia,-1 =aia,-1, ∀ia ∈ {0, . . . , na}, (9)

Here for simplicity of notation it has been assumed that
the weights corresponding to the boundary input channels
are the same as the weights for the inputs from the
corresponding neighbor. Hence, now the goal is to train
only these m = 3na + nb + 3 weights. Note, that in the
multivariable case these weights of the NN are matrices,
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Figure 3. Closed-loop LRNN of unit j of a 2-D system



but as this would unnecessarily complicate our notations
here we derive our result in the case of scalar signals.

Let Θ ∈ R
M×1 denote a vector of the stacked weights

subject to training of the complete closed-loop intercon-
nection, i.e., excluding weights that are not subject to
training, such as controller gains. Let, further, θ ∈ R

m×1,
denote a vector of the stacked unique weights in the
closed-loop interconnection. Then equations (6)–(9) can
be imposed, by writing

Θ = Pθ, (10)

where P ∈ R
M×m is a matrix, each row of which has a

single identity element and all other elements zero. The
position of the identity element is such that the correct
element of θ is substituted in Θ, according to (6)–(9).
Formally this can be stated as: each row of P is equivalent
to eh for some h, where eh is row h of Im. For example in
Fig. 1 and Fig. 3 this equality reads
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Θ = P θ

It should be noted that in general the structure of P is
not as simple as the one for the example presented here.
However in all cases P has full column rank, as each
element of θ is involved in at least one element of Θ.

Now, the true weights to be trained are the elements of
θ. For any particular θ one can obtain the corresponding
weights of the complete LRNN by substituting in (10).
Then the training process of the unconstrained LRNN
(see, e.g., [Hagan and Menhaj, 1994], [Narendra and
Parthasarathy, 1990] and [Narendra and Parthasarathy,
1991]) can readily compute the gradient of (5) w.r.t. the
elements of Θ and the necessary update step dΘ of Θ. The
following lemma provides the necessary update dθ of the
trained coefficients.

Lemma 1. If the update step dΘ of Θ = Pθ is known, then
the update step dθ is

dθ = (P⊤P )−1P⊤dΘ. (11)

Proof. Recall (see, e.g., [Petersen and Pedersen, 2008])
that the derivative of Θ is

dΘ = (∇θΘ) dθ,

where ∇θΘ = P is the gradient of Θ w.r.t. θ. Then since
P has a full column rank it follows that (P⊤P ) ∈ R

m×m

is invertible. Applying the Moor-Penrose inverse leads to
the desired result.

3−3 −2 −1 0 1 2

Figure 4. Portion of a rod. Dashed arrows show sensor sig-
nals, solid lines show actuator signals to the segments.

4. ILLUSTRATIVE EXAMPLES

The presented approach is illustrated by two simulation
examples.

4.1 Example 1: Open-Loop Identification

As a practical example of the proposed approach, a heat
conduction in a rod of length one meter is considered.
This represents a distributed parameter system and has
also been used in [Augusta et al., 2007]. Fig. 4 shows
a schematic diagram of a part of the rod with an array
of temperature sensors and actuators. The indices of the
sensor-actuator units indicate an offset w.r.t the center of
the rod and are meant to emphasize that the system is
non-causal in space. The system is described by the heat
equation

∂u(t, x)

∂t
= κ

∂2u(t, x)

∂x2
+Q(t, x), (12)

where u(t, x) denotes temperature [℃]; t and x denote time
[s] and space [m] coordinates, respectively; κ is a constant
[m2s−1] and Q is the input heat energy [℃s−1].

Equation (12) is discretized using the central difference
method to approximate the partial derivatives as

(
∂u(t, x)

∂t

)

k,j

=
u(k + 1, j)− u(k, j)

T
,

(
∂2u(t, x)

∂x2

)

k,j

=
u(k, j − 1)− 2u(k, j) + u(k, j + 1)

h2
,

where T is the sampling time and h is the spatial sam-
pling distance between two nodes along the rod. Then at
instance (k, j) equation (12) can be approximated as

u(k+1, j) =
T

h2
u(k, j−1)+(1−2

T

h2
)u(k, j)+

T

h2
u(k, j+1)

+Q(k, j) (13)

Here we are assuming that κ = 1 and the input is TQ(k, j).
The difference equation (13) can be represented in transfer
function form as

G(q, p) =
b1,0q

−1

1 + a1,-1q−1p+ a1,0q−1 + a1,1q−1p−1
, (14)

with

b1,0 = 1,

a1,-1 = −
T

h2
, a1,0 = −1 + 2

T

h2
, a1,1 = −

T

h2
.

We assume that the rod is divided spatially into NJ = 9
nodes, i.e., h = 1/9, and that T = 0.005 s. Noisy data
is generated from this system by considering a structure
as in Fig. 2 with H(q, p) = 1, where y(k, j) represents
noisy output. The input r(k, j) and e(k, j) are taken as 2-
D zero-mean normally distributed white-noises. For differ-
ent signal-to-noise ratios (SNR), Monte-Carlo simulations



were carried out with 100 samples. In each simulation run
NK = 1000 measurements were made, i.e., ZNK×NJ ∈
R

1000×9. For each measurement set the identification was
carried out both with the proposed approach and the one
presented in [Ali et al., 2010a], based on iterative algorithm
based on linear recurrent neural networks (IA-LRNN).

The obtained results are reported in Tables 1 and 2,
where the bias and variance norms are defined as ‖θ0 −

E[θ̂]‖2 and ‖E[(θ̂ − E[θ̂])2]‖2, respectively, where θ0 is

the true parameter vector and θ̂ is the estimated one.
One can easily see, both from the numerical values of the
coefficients in Table 1 and the bias norm in Table 2, that
the proposed approach obtains values closer to the true
parameters than the iterative algorithm based approach,
by achieving similar variance of the results.

Table 1. Mean of the estimated parameters at
SNR = 10 dB for example 1.

Parameter True Estimated values

values IA-LRNN Proposed

b1,0 1.0000 0.9940 0.9997

a1,-1 −0.4050 −0.3724 −0.4048

a1,0 −0.1900 −0.2222 −0.1909

a1,1 −0.4050 −0.3745 −0.4045

Table 2. Estimation bias and variance norm at
different SNR for example 1.

SNR Bias Norm Variance Norm

dB IA-LRNN Proposed IA-LRNN Proposed

15 0.0247 0.0007 1.5× 10−5 1.8× 10−5

10 0.0554 0.0011 6.4× 10−6 1.1× 10−5

The measured noisy output, noise-free output and simu-
lated output of the identified model for unit j = 5 are
shown in Fig. 5.
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Figure 5. Example 1:Response at j = 5 for SNR = 10 dB

4.2 Example 2: Closed-Loop Identification

Our second example considers the closed-loop identifi-
cation of an unstable spatially distributed system. For
the purpose of illustration we take a simple model with
appropriately chosen coefficients, that result in an open-
loop unstable system. The system dynamics are described
by

G(q, p) =
b1,0q

−1

1 + a1,-1q−1p+ a1,0q−1 + a1,1q−1p−1
, (15)

where NJ = 9, T = 0.005 s, and the selected coefficient
values are

b1,0 = 1

a1,-1 = 0.595, a1,0 = 0.81, a1,1 = 0.595.

In order to stabilize the system a simple, spatially dis-
tributed controller is selected,

C(q, p) = γ-1p+ γ0 + γ1p
−1, (16)

where γ-1 = −0.75, γ0 = −0.75 and γ1 = −0.75. The
closed loop system with the above plant and controller
is shown in Fig. 6. The measurement data is generated
by exciting the system with 2-D random white noise with
normal distribution. Thus the output signal is corrupted
with a v(k, j) which is filtered 2-D white-noise e(k, j) with
normal distribution. The measurements are made with
NJ = 9 and NK = 1000.

y0(k, j)

C(q, p)

G(q, p)
up(k, j)

r(k, j)

e(k, j)

−
y(k, j)

Figure 6. Two-dimensional closed-loop system

A LRNN as shown in Fig. 3 is then constructed. The
network is trained using the modified back-propagation
algorithm discussed in Section 3, where only the plant
weights are trained. As before, Monte-Carlo simulations
with 100 runs are performed and the results are presented
in Tables 3 and 4.

Table 3. Mean of the estimated parameters at
SNR = 10dB for example 2.

Parameter True Estimated values

values IA-LRNN Proposed

b1,0 1.0000 0.9997 1.0000

a1,-1 0.5950 0.6165 0.5949

a1,0 0.8100 0.8107 0.8102

a1,1 0.5950 0.6142 0.5959

5. CONCLUSIONS

In this paper we have presented a method for the identifi-
cation of transfer function models for distributed systems
composed of identical subsystems. The approach is based
on structured LRNN and exploits the replicated nature of



Table 4. Estimation bias and variance norm at
different SNR for example 2.

SNR Bias Norm Variance Norm

dB IA-LRNN Proposed IA-LRNN Proposed

15 0.0101 0.0005 3.5× 10−6 1.1× 10−5

10 0.0288 0.0009 1.1× 10−5 3.4× 10−5

the subsystems. The method allows open-loop and closed-
loop identification, provides an unbiased parameter esti-
mate as compared to the existing methods and allows
identification of systems with heterogeneous units and
non-uniform structure, while at the same time naturally
providing a way for handling boundary conditions. The
main contribution of this note is that it can identify unsta-
ble plant model with minimum bias in the parameters esti-
mate. Two numerical examples, one in open-loop and one
in closed-loop, illustrate the approach and demonstrated
its superiority over an iterative algorithm based on LRNN.

Future application of the proposed method will include
the identification of input-output form models of fluid
flows with Reynolds number greater than 5800. Such flows
are unstable spatially distributed system [Bewley and Liu,
1998] the control of which is an active area of research (see,
e.g., [Chughtai and Werner, 2008a]).
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